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Nonlinear dynamics in economics and finance

By Jost A. SCHEINKMAN

Department of Economics, University of Chicago, 1126 E. 59th Street, Chicago,
Illinois 60637, US.A.

The apparent success of ‘chaos’ in the physical sciences has had inevitable
repercussions on economics. In this paper I describe theoretical models that show

é that complicated deterministic dynamics may arise even in the most standard
> s economic environment, and some of the attempts to evaluate empirically the
@) : importance of these nonlinearities in economics and finance. There seems to be no
e evidence that ‘deterministic chaos’ can adequately describe economic data, but some
= O evidence of a role for nonlinearities.

L O

Hw

1. Introduction

The apparent success of ‘chaos’ in the physical sciences, has had inevitable
repercussions on economics, and some recent theoretical work has focused on the role
of nonlinearities in economic dynamics. This is, in a sense, a revival of earlier efforts
in the study of economic fluctuations (Kaldor 1940 ; Hicks 1950 ; Goodwin 1951) that
regarded the market mechanism as dynamically unstable and tried to model
economic fluctuations as the output of nonlinear deterministic dynamical systems.
However, at least since the early 1960s, the profession had largely switched to a focus
on linear (really log-linear) models where exogenous stochastic shocks (e.g.
unforecastable changes in technology, in monetary or in fiscal policy) where
transformed, through the economy’s propagation mechanism, into low-order linear
stochastic difference equations, that in turn generated cyclic processes that mimicked
actual business cycles.

There seem to have been at least two reasons that led to the dominance of the
linear stochastic difference equations approach. The first one was the fact that the
nonlinear systems seemed incapable of reproducing some of the most obvious aspects
of economic time series. At best, such models were able to produce periodic motion
and the examination of the spectra of economic time series showed the absence of the
spikes that characterize periodic motion. This objection is now widely known to be
invalid in view of results (Sakai & Tokumaru 1980) that show that deterministic
systems can generate spectra that would exactly reproduce those of random systems.
The second reason was the relative empirical success of the models based on linear
stochastic difference equations as well as the lack of evidence of any gains with the
introduction of nonlinearities. Examination of asset prices, that economists have
long understood to result from many of the same forces that govern output, also
seemed to favour stochastic linear models. For the most part a random walk seemed
to adequately describe stock returns over periods at least as long as a week (Fama
1970). The development of new algorithms that in principle could detect whether
time series that look ‘random’ were actually the product of low-dimensional
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236 J. A. Schetnkman

deterministic dynamics, has led economists to re-examine the adequacy of the
stochastic linear models.

The interest on nonlinear dynamics goes beyond the theoretical question
concerning the intrinsic stability of market economies. Predicting asset returns on
the basis of past patterns has been for a long time an active industry, and ‘chaotic
dynamics’ seemed to give it new respectability. Economists have long been sceptical
of the possibility of survival for long periods of stable laws that would allow
‘technical traders’ to exploit profit opportunities. This is a result of viewing market
prices as resulting from the actions of economic agents, many of whom are constantly
trying to find profit opportunities. In fact, as discussed below, asset prices may, in
principle, display chaotic behaviour while, at the same time, no possibility for
‘arbitrage’ is present.

In this paper I will first describe some of the theoretical models that show that
complicated deterministic dynamics may arise even in the most standard economic
environment. Though asset returns data lead one naturally to consider economies
were a certain amount of ‘uncertainty’ is present, in these stochastic economies there
may still be an important role for nonlinearities, since the conditional distribution of
future state variables is, in general, a nonlinear function of the current values of the
state variables. The deterministic models can thus still be used to try to understand
the economic forces that may be responsible for part of the apparent uncertainty.

Another entirely different matter is whether these potential nonlinearities are
needed to explain actual economic data. Although the most successful efforts to
confront dynamic equilibrium models with data involve parametrizations where, in
the absence of shocks, fluctuations will be absent, there is much left to be explained
in the cyclical behaviour of modern economies and in asset prices (Murphy et al.
1989). In an attempt to assess the importance of nonlinearities, some researchers
have examined economic data using measures developed in the mathematics and
physics literature such as the correlation dimension and Liapunov exponents, or
using statistical techniques based on these measures. In what follows I will discuss
some applications to economic time series. There is no evidence that ‘deterministic
chaos’ can adequately describe economic data, but some evidence of a role for
nonlinearities. However, economic forces limit the form of the nonlinearities and, in
particular, there has been no successful demonstration that one may produce
profitable trading strategies making use of these nonlinearities.

2. Equilibrium models

In modelling economic dynamics we must confront the fact that the agents whose
behaviour are generating the dynamics are themselves observing and trying to
forecast the actual dynamics. Perhaps this is simpler to understand in the context of
stock prices. Suppose that a vector of stock prices follows a dynamics p,., = f(p,, P,
..+, Py—;) and that given a particular history of prices (p;, §,_;, ..., §;,—;) the rate of return
as of time ¢, P, /P! of an asset 7 is superior to that of other assets (for simplicity we
assume that no dividends are being paid to holders of the asset between ¢ and ¢+ 1).
Speculators that become aware of the dynamics would buy asset ¢ at ¢ and plan to
sell it at 41 to profit from this opportunity. This demand by speculators would by
itself pressure the price of asset ¢ at ¢ upward, destroying the original dynamics.
Though stock speculators may not have available the most sophisticated tools for
reconstructing the dynamics from market observations, the continuous observation
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Nonlinear dynamics in economics and finance 237

of market prices must lead them to discover at least some of the profit opportunities
and their attempts to profit from the uncovered patterns should alter the dynamics.
Of course this does not rule out the possibility that profitable trading patterns may
survive for short periods.

Though there is a general agreement among economists that, as in this example,
agents’ forecasts of future values of the state variables and the effect of these
forecasts on the future values of these variables must be modelled explicitly, there
is much less consensus on how to accomplish this. At one extreme are the ‘rational
expectations’ or ‘perfect foresight’ dynamic equilibrium models. Here one tries to
derive aggregate behaviour from assumptions on the tastes of individual consumers
and technologies available to producers as well as the market structure and by
postulating that the economic agents in the model completely understand the
structure of the model. In the stock price dynamics discussed above, this approach
will require that the law of motion f be such that when agents forecast future prices
using f, the demand for assets equals the supply. One should notice that the word
equilibrium is used here to mean market clearing. The actual price path p, is certainly
not constant and may in fact exhibit very complicated dynamics. An important
aspect of this ‘perfect foresight equilibrium’ is the consistency between the law of
motion of price that agents perceive and the actual law. This consistency insures that
there are no incentives for agents to revise their forecasting rule.

It is, of course highly unlikely that, if prices follow complicated trajectories, agents
can learn to forecast perfectly future prices or dividends, even after a long string of
observations. The same property that makes chaotic systems look as if they are
random — their sensitive dependence to initial conditions — also makes the task for
forecasting future values extremely difficult. An outside observer (economist) may
very well decide to treat the problem using statistical techniques. The fact that he
is mistakenly treating the data as if arising from a random system will not, by itself,
invalidate his statistical methods. If the observer allows for a sufficient number of
parameters, he can in fact, with enough data, approximate well the true law of
motion. If the forecaster uses some simple statistical model, e.g. a linear model, the
forecasts will, even in the limit, still display error but in any case the forecasting
activity of the economist does not alter the dynamics. In actual economies, however,
agents forecast, at each time ¢, future prices and rates of return and make buying and
selling decisions. The aggregate decisions, in turn, affect the rates of return of assets
that each agent is trying to learn. In order to define the price dynamics we must
postulate the mechanism used by agents to learn about the actual dynamics.

Though some progress has been made concerning equilibrium models with some
special learning rules in the presence of exogenous shocks (cf. Bray 1982; Marcet &
Sargent 1987; Guesnerie & Woodford 1992), much less is known in the context of
deterministic but complicated dynamics. In any case, rational agents facing the
problem of forecasting a variable that follows ‘chaotic’ dynamics, may very well
treat it as if the future values of the variables they are trying to predict are at least
in part random. In this case we may have to model the economy as if uncertainty is
present. From this viewpoint, it may be less crucial to decide whether ‘real’
uncertainty is present, say through random shocks to the future dividends of the
stock in the example discussed above, or whether uncertainty is a result of agents
limitations in forecasting. (This has a flavour of the results in the ‘sunspot’ literature
surveyed in Guesnerie & Woodford (1992).) It should be noted, however, that in both
cases the realizations of the ‘random variables’ are likely to affect the future
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evolution of the state variables. If, for instance, prices of certain assets turn out to
be higher than expected at a certain date, agents consumption and savings decisions
will be affected. This in turn is likely to affect the future price of the assets. In other
words the dynamics of such an economy is given, at best, by a system such as:
Per1 = 9(Py, 1) as opposed to a deterministic system in which the observables are
subject to random noise.

3. A dynamic Robinson Crusoe economy

The simplest dynamic equilibrium model is one that describes an economy with a
fixed technology and homogeneous agents. The homogeneity of agents insures that
this economy is essentially a one agent economy much like the Robinson Crusoe
economy familiar from economic textbooks. This is certainly not realistic, but will
allow me, without spending an inordinate amount of space, to raise some of the issues
that I want to discuss.

To describe fully such an economy we will need to specify the production
possibilities and how consumers evaluate the different consumption streams, i.e. the
utility that consumers obtain from consumption sequences. Assume that there is a
fixed set of » capital goods and a single consumption good. Consumers are supposed
to discount future consumption using a discount factor 0 < § < 1. That is, the
representative agent attributes to a sequence {c};°, the utility 2 &, The
production possibilities are the triples (x,y,¢) representing the combinations of end
of period capital stocks y € R} and consumption amounts c€ R, that can be obtained
from an initial capital stock vector x € R} at any period ¢. I will assume that there
exists a compact convex set B < R3", containing (0,0), and a C?, strictly concave
function » defined on B, with values on the non-negative reals, such that a triple
(x,y,c) is feasible if and only if (x,y)e B and, 0 < ¢, < v(x, y). Further, v is assumed
to be non-decreasing in its first » coordinates and non-increasing in its last n
coordinates. The real number »(x, y) measures the maximum utility flow achievable
in the period if the initial vector of capital stocks is # and the final vector is y. The
monotonicity imposed on v corresponds to the natural hypothesis that in order to
achieve a fixed final vector of capital stocks, it is easier to start with a higher capital
stock and that it requires consumption sacrifice to accumulate capital. The
compactness of B will keep the possible capital stock paths {x,};°, in a bounded
set. (It would be more natural to assume only that {y € R"| there exist xe R" with
(x,y)€ B} is compact. This, however, would add no generality.) The convexity of B
and concavity of v correspond to the absence of increasing returns. This absence of
increasing returns is necessary to show that the behaviour of this economy can be
mimicked by a market economy as discussed in the next section. With this notation
one may write the problem that the representative consumer solves as:

Problem (P):

Max X Ow(x,2,,) st (x,2,,)€B and x,> 0 given.
0<t<oo
1 will write V(x) for the value of problem (P) when xz, = x. Note that V(x) < co and
V(x) > — o, for any x such that there exists a sequence {z,};°, with (z,, z,,,)€B and
x, = x. This will be true, in particular, if (x,0) € B. The function V satisfies Bellman’s
equation:

V(x) = max {o(a,y)+8V(y)). (1)

(x,y)eB
Phil. Trans. R. Soc. Lond. A (1994)
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4. Complicated dynamics

The economy described in the previous section is equivalent to a standard convex
dynamic optimization problem. None the less dynamics of the state vector x, can be
remarkably complicated. In fact, the following result by Boldrin & Montrucchio
(1986) states that one may arbitrarily choose the dynamics associated with problems
such as (P):

Proposition 4.1. Let X be a compact, convex set in R, and f:X —~ X be a C? map.
Then there exists convex and compact B < X x X, such that for any x€X, there exists
yeX such that (x,y)€B, and smooth strictly concave function v:B— R, increasing in
the first n coordinates and decreasing in the last n coordinates, and de (0,1) such that
X = f(x,) defines the unique solution to:

Max X &w(x,2,,) st (x,2,.,)€EB and x, > 0 given.
0<t<oo
Further, v and & can be chosen such that if V(x) denotes the value of this problem, then
the function V:X - R is C* and strongly concave.

5. Examples

The proof of Proposition 4.1 is constructive and one can exhibit for a given
candidate dynamics f, a function » and a discount factor ¢, such that x,,, = f(x,)
solves P. Proposition 4.1 shows that complicated dynamics is perfectly consistent
with the standard assumptions of competitive models, but it provides little insight
into the economic logic that leads to the optimal behaviour being so irregular. To do
this one would like to start with certain parametrized classes of examples, where the
parameters can, in principle, be matched to data on actual economies, and show that
for certain parameter values the resulting optimal policy function f is chaotic. This
would also help in judging the likelihood that chaotic behaviour arise in actual
economies. Since solving problem P explicitly is not possible in many cases, the
strategy is to show that, under certain ‘natural’ assumptions on {4, v, B} the optimal
policy function f is chaotic.

All fully worked out examples in the literature on economic fluctuations arising
from purely deterministic models as the one described above (cf. Boldrin &
Woodford’s (1990) survey and references therein) involve a single capital good, i.e.
n = 1, even though intuition indicates that multidimensional systems are more likely
to give rise to complicated dynamics. When n = 1, typically one finds conditions that
guarantee the existence of a period three cycle for the optimal policy function f and
hence topological chaos. For concave and smooth v, a necessary and sufficient
condition for a period three cycle (x,,z,,2,) in the interior of B is that for each
1€{1,2,3}, if , = x, and x, = ,, the associated Euler equation holds:

o o
@(xi>xi+l)+8_(xi+l’xi+2) =0. (2)

Ox
Though equation (2) has been used to show that chaotic dynamics may arise in the
context of some parametrized examples, the parameter values that are required are
not reasonable. (For instance setting B = {(z,y)eR%:x < 1,y < 1,yy < 2} and, v(x,y)
=(1—yl(x—yy)* with0<y<1,0<a<1,and 0 <a+p <1.) In particular the
discount rate ¢ is seldom above 0.3, which indicates a rate of interest above 200 %
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per period. (If the utility function v is strongly concave, for ¢ sufficiently close to 1,
all optimal trajectories must be convergent (Scheinkman 1976). Hence complicated
dynamics require, other things held equal, a relatively large discount factor.
However, other forms of non-convergent behaviour, e.g. periodic orbits have been
shown to appear in similar examples at much more reasonable value for 4.) More
reasonable examples may be obtainable in the presence of many capital goods, but
none have yet been produced. (Several types of ‘market imperfections’ can also be
used to generate complicated dynamics. Another alternative is to deal with
‘overlapping generations’ models (cf. Boldrin & Woodford 1990).)

6. Price dynamics

As stated, the Boldrin—-Montrucchio result deals with the trajectory of capital
stocks in a centrally planned economy. One interest here is in the behaviour of
market economies and in fact much of the available economic data, specially high
frequency data, refer to prices (and sometimes quantities traded) of assets. A
decentralized version of our artificial economy can, however, be constructed, in a
way that is similar to the usual textbook Robinson Crusoe story. In this section I
discuss how this decentralized economy can be constructed. More precise statements
can be found in Appendix A.

The assumed convexity of the set B and concavity of the utility function » is
enough to allow us to characterize a solution to Problem P as resulting from an
equilibrium of a dynamic economy. In this economy at each time ¢ there are three
sets of markets open. In the first set of markets, capital goods that are used as inputs
in the production at ¢ are traded in exchange for the consumption good produced at
t. In the second set of markets capital goods that are produced at ¢ are exchanged for
the consumption good produced at ¢. There is also an idealized stock market that I
discuss below.

A profit maximizing firm is assumed to own the technology B. At each period ¢, the
firm buys capital goods produced at t —1 from consumers, and uses them to produce
the consumption good and new capital goods that it sells to consumers. The firm
takes prices as given. Notice that the firm faces a purely static problem of profit
maximization and we need not make any assumptions concerning how the firm’s
managers forecast future prices.

The problem for the representative consumer involves, on the other hand,
interaction across periods. At each point in time he has to decide how many capital
goods of each kind he wants to have next period to sell to firms. This, in turn, requires
the consumer to forecast prices that will prevail in the future. Since I have
normalized the technology in such a way that capital goods last only one period, to
be able to discuss the prices of long lived assets, I will introduce an extra asset
market. One share of the firm entitles its owner in period ¢ to receive a dividend that
equals the total profit the firm realizes at ¢. These shares are also traded in a
competitive market in exchange for consumption goods.

A representative consumer takes as given the sequence of future prices in all three
sets of markets as well as the sequence of future profits that the firm will pay to
stockholders. A representative consumer chooses at each ¢ >0, an amount ¢, to
consume, an amount x,,, of capital stock to carry into the next period as well as an
amount 0,,, of shares to the profits of the firm. In each period ¢, a consumer’s choices
must satisfy a budget constraint that states that the consumption and acquisition of

Phil. Trans. R. Soc. Lond. A (1994)
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assets at a period f must be financed by the sale of assets or dividends received. The
objective of the consumer is, as before, to maximize X .

An equilibrium is a sequence of prices for capital goods inputs and outputs, and the
firm’s share, today and at each future period, such that if consumers forecast these
future prices then their actions will ensure that in all three sets of markets, demand
equals supply at every ¢. This notion of equilibrium makes strong requirements
concerning the consumers foresight and missing is any explanation of how consumers
would arrive at this forecast, but, at this point, T merely want to show that
complicated dynamics may arise even in an economic world in which drastic
simplifying assumptions have been made.

As shown in Appendix A, whenever the optimal solution to P is interior, the
equilibrium prices of inputs p! satisfy pi = V'(z,) and hence,

P = V(S (VD))
Since V is strongly concave, the dynamics of p} is equivalent to that of x,. Hence the
dynamics of the vector of input prices pi can be arbitrarily complicated. The same
result holds for either the price of capital goods output at ¢, or for the dynamics of the
share price. Hence the Boldrin—Montrucchio result can be used to establish that in
a very simple competitive economy we may obtain, as an equilibrium, complicated
paths for the capital stocks, prices of capital goods or stock prices.

These simple dynamic economies do, however, impose other, very strong,
restrictions on asset prices. The rate of return at time ¢ of an asset is equal to its price
plus dividends at ¢+ 1 divided by its price at ¢. If, at time ¢ asset [ has a higher rate
of return than asset I, a consumer that buys asset " at time ¢ can obtain a higher
consumption at ¢+ 1, without lowering his consumption at any future date, by
buying asset [ instead of I". If two assets have a different rate of return, a consumer
will not hold any of the asset with the lower rate of return. Hence, in equilibrium,
all assets that exist in positive amounts must have the same rate of return. Though
asset prices can exhibit complicated dynamics, asset dividends must adjust to
equalize returns.

The equality of ex-post returns, which obviously does not hold even as an
approximation, can be readily used to reject these purely deterministic models. As
discussed above, in these economies consumers are assumed to have perfect foresight
concerning future prices and dividends. In these perfect foresight economies we are
able to show that equilibrium prices can follow very complicated trajectories, but
rates of return must be equalized across all assets. As we argued above, it is highly
unlikely that, if prices follow complicated trajectories, consumers can forecast
perfectly future prices or dividends, and in fact these economies may look as if
exogenous stochastic shocks are present. Further, the particular realizations of the
‘random variables’ are likely to affect the future evolution of the state variables. If,
for instance, prices of the capital goods that are used as inputs in the production
process turn out to be higher than expected at a certain date, consumers will
probably try to save some of their unexpected income. This in turn will affect the
supply of capital goods next period and the distribution of future output. In other
words the dynamics of such an economy is given, at best, by a system such as:
%y = f(2,, ), as opposed to a deterministic system in which the observables are
subject to random noise. (If the technology set B (or the function ») is subject at
each ¢ to an independently and identically distributed shock g,, then the solution to
problem (P) is given by a stochastic difference equation such as x,,, = f(z,, p,). If

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
a\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

242 J. A. Scheinkman

we further assume that enough markets exist then we may decentralize the economy
much in the same manner as above. In this case asset prices will also follow
stochastic difference equations (cf. Lucas 1978).)

The presence of uncertainty does not, however, eliminate the role for nonlinearities.
The same forces that create nonlinearities in the deterministic economies I discussed
above, can also create nonlinear dependence when randomness is present. (Benhabib
& Nishimura (1989) illustrate this point.) Suppose the state variables follow a system
such as z, , = f(x,, #,) where u, is a random variable, and f is nonlinear. Estimating
a linear system from the data may lead to an exaggerated view of the role of
uncertainty. Another entirely different matter is whether these potential non-
linearities are needed to explain actual economic data. The next section explains
some tools developed to answer this question and discusses some empirical results.

7. Statistical tools

The earlier efforts in applying the ideas of chaotic dynamics to uncover nonlinear
dependence in economic data (cf. Scheinkman 1985; Brock 1986) consisted simply of
using certain tools developed in the mathematics and physics literature in a rather
direct way. The application of these techniques to economics present several
problems. First, the time series in economics, with perhaps a few exceptions in
finance, tend to be much shorter than it seems necessary to obtain good estimates.
(Ramsey & Ywuan (1987) contains a discussion of the statistical properties of
dimension calculation with small data-sets. Ruelle (1989) makes some important
admonitions concerning dimension calculation.) Secondly, as I argued above, it is
unlikely that the economic time series of interest are generated by purely
deterministic systems. Further, the uncertainty is likely to affect the dynamics itself
as opposed to merely affecting the observations. None the less the earlier work
suggested that nonlinearities may be present in certain economic time series and
inspired the development of asymptotic distribution theory for some statistics
related to the correlation dimension (cf. Brock et al. 1987). (There are of course many
other statistical techniques designed to detect the presence of nonlinearities that
have been applied to economic time series (cf. Engle 1982; Hinich 1982; Tsay 1986).
However, I focus here exclusively on methods related to nonlinear dynamics.)

Let y,,y,, ..., be a sequence of vectors in R?. For each y > 0, let
2
0 =|—= Oty —ly, —.
m (m(m— 1))1<i<2j<m (7 |yz yjl)’ (3)

where 0(a) = 0 if a <0, and 0(a) = 1 if @ > 0. Here, |y, —y;| = max, |yf —y|.

Intuitively C,,(y) denotes the fraction of the first m vectors y,s that are within y
of each other. For each v, if the limit exists, let

Cly) = lim O, (y). 4)

The quantity C(y) indicates the fraction of all vectors that are within y of each other.
(Recall that the correlation dimension of {y,}{, is defined as d = lim, ,log C(y)/log
y.) If &, z,, ... is a sequence of real numbers, for N > 1 each 2 = (v, %1, .-, ¥ n_1)
will be called an N-history. For each m, let

2 N-1
ON(y) = (~——1)) S 00—l —2 )], 5)

m(m— 1<i<j<m k=0
Phal. Trans. R. Soc. Lond. A (1994)
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Nonlinear dynamics in economics and finance 243
and, if the limit exists, CN(y) = lim C¥(y). (6)
m—>o0

Clearly, C¥(y) is the fraction of the first m, N-histories that are within v of each other
and similarly for C¥(y).

If each z, is an observation of independently and identically distributed (1ip)
random variables then one should expect that, for m large,

On(y) = 105", (7

In fact, it can be shown (see Appendix B for details) that there exists a sequence of
positive numbers Vy ,,, that can be computed from the data, such that if each , is
an observation of DD random variables, then

Wa ) = vVm[Co(y) = (CLyN™1/ Vi, m (8)

is asymptotically distributed as a normal distribution with mean zero and unit
variance. This distribution free statistics can be used in testing for the presence of
nonlinearities. A key point in establishing (8) is the recognition that Cy(y) is a
U-statistic in the sense of Hoeffding (1948). (Originally U-statistics were defined for
the case where #,,,, ..., are ib. A symmetric function 2:R" - R is a kernel for p if
u=Eh(y,,...,yy). Corresponding to the kernel A there is a U-statistic

-1
U@y ovosY) = (va) S Ao,

where the summation is over all (%) combinations of N distinct elements (i, ...,7y)
from {1, ...,m}.) Several results concerning central limit theorem for U-statistics exist
in the literature. Modern treatments of the theory of U-statistics can be found in
Sefling (1980) and Denker & Keller (1983). The fact that C(y) is U-statistic can also
be used to show asymptotically normal behaviour of other statistics related to the
correlation dimension, including estimates of the slope of log [C(y)].

Frequently one is interested in finding nonlinear dependence on the residuals of
particular models fitted to the data. In many macroeconomic time series, for
example, low-order autoregressive models are known to yield a good fit. In the
analyses of foreign exchange rates, ARCH models (cf. Engle 1982) were used by Hsieh
(1989) to pre-filter the data. In practice one can proceed as in Scheinkman & LeBaron
(1989a, b) to examine the distribution of the estimated residuals. First, the model is
estimated and a set of residuals is generated. These residuals are randomly reordered
and data-sets are then reconstructed using the estimated model. In each of these data
sets one re-estimates the model and measures the WX (y) statistics on the residuals.
This ‘bootstrap’ like procedure is then used to determine the significance of the value
of the statistics in the original residuals. Another possibility is to determine the effect
on the variance of the estimator caused by the fact that the residuals are estimated.
Results of this type can be found in Brock et al. (1990).

8. Empirical results

The statistics discussed in the preceding section as well as methods developed in
the mathematics and physics literature, have been used to detect evidence of chaos,
or at least for the presence of nonlinearities, in economic time series.
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In macroeconomics, time series are simply too short and noisy. Most macro-
economic data have a quarterly or at most monthly frequency. There are a few
economic time series that have been produced for a very long period but, in these
cases, there is usually strong evidence against stationarity. Statistics such as (8)
above, as well as others, have been used to detect evidence for nonlinearity in
economic time series including U.S. industrial production and unemployment series.

Financial time series seem immune to many of the problems that plague
macroeconomic data. First, prices of assets are observed rather directly and this
avoids many of the measurement issues concerning macroeconomic time series.
Secondly, data are sampled at high frequencies. Nonetheless the application of tests
developed in the mathematics and physics literature have not led to any convincing
evidence for deterministic chaos.

Attempts to use statistics based on the correlation dimension, such as (8), to find
evidence for the presence of nonlinearities have met with more success. Scheinkman
& LeBaron (1989a) found strong evidence to reject the hypothesis of 11b innovations
in weekly and daily returns on the value weighted portfolio from CRSP. (The Center
for Research in Securities Prices at the University of Chicago.) Potential source of
these results were several calendar anomalies that had been detected earlier in stock
returns including monthly by Ariel (1987) and weekly by French (1980). LeBaron
(1988) found that accounting for these anomalies did not alter the reported rejection
of the hypothesis of 11 innovations.

Fama (1965) following a suggestion of Mandelbrot, found some evidence that large
absolute price changes in certain stock prices tended to be followed by other large
absolute price changes. The aArcH model and its GarcH variant (cf. Engle 1982;
Bollerslev 1986) provide parametric versions that capture conditional hetero-
skedasticity, that is the fact that the variance of the distribution of price changes,
conditional on past prices, is not constant. Hsieh (1990) discusses the literature and
presents further evidence indicating the presence of conditional heteroskedasticity in
weekly and daily stock returns. To examine whether these models could
accommodate the observed departures from 11D innovations, LeBaron (1991) looked
at GARCH residuals of the weekly returns on the CRSP value weighted portfolio. The
estimates based on the whole sample (1962-86) showed that the normalized GArcH
residuals continued to show significant departures from 11p innovations. However, if
the sample is divided in two halves, one cannot reject the 11p hypothesis on the
residuals of the second half. This result raises questions concerning the stationarity
of the return series, which is frequently an implicit assumption.

The departure from 1p residuals would seem to indicate that a prediction of
returns superior to the forecasts implied by the random walk model could be made.
LeBaron (1988) tried locally weighted regressions and was unable to beat the random
walk prediction in a convincing manner. His results seem to indicate that the
departures from the random walk may occur principally through the forecastability
of the second or higher moments. Mayfield & Mizrach (1989) also examined the
question of predictability in intra-day data. They examined data on the S & P 500
stocks average, sampled once every twenty seconds and concluded that predictions
superior to random walk predictions could not be made even five minutes ahead.
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9. Conclusion

In this paper I surveyed the impact of some of the recent developments in the
mathematics of nonlinear deterministic time evolutions in economics. From a
theoretical viewpoint it has helped economists understand that, at least in principle,
some of the apparent randomness in economic time series may be the result of the
presence of nonlinearities. Eventually this may prove to be a fruitful approach in
explaining the observed instability of economic time series, but this must wait the
development of more ‘realistic’ theoretical models. Examination of asset returns
indicates the presence of nonlinear dependence in several financial time series,
though persuasive evidence to favour chaos has not been uncovered.

The potential use of dynamical systems methods to predict future asset prices
seemed to give new respectability to ‘technical trading’. The published literature to
date does not support this view though there is, of course, the possibility that
methods of dynamical systems may be used to quickly detect temporary patterns
that may appear in asset price series. These results do not surprise most economists.
There is a lot of resources dedicated to finding strategies that yield extraordinary
returns. As such opportunities are detected, the effect on prices of the collective
actions of agents trying to make profits tends to destroy the existing patterns. If at
some point in time, nonlinearities allow for strategies that generate abnormal profits,
market forces should eventually lead to a change in the dynamics of stock prices.

Appendix A

In this appendix I state more formally the results discussed in §5. If one assumes
that the technology set B is ‘sufficiently productive’, the postulated convexity (i.e.
the convexity of B and the concavity of the function v) is enough (cf. McKenzie 1976)
to guarantee that if the sequence x,, ¢ > 0 solves (P), there exists a sequence ¢, R"
such that, for each ¢, and each (x,y)eB

(X, X)) F Qi Xpgr — Q" % = 00(, Y) + iy Y — G 9)

Further, ¢,/0" is a subgradient of the concave function V at z,. (With the assumptions
we have made, it suffices to add the hypothesis that f(X) has a non-empty interior,
and that x, is in the interior of X. Here, f: X — X is the candidate optimal policy
function. McKenzie (1976) contains much weaker hypothesis.)

This result can be used to give a ‘decentralized’ interpretation to our economy. A
profit maximizing firm owns the technology. At each period ¢ the firm buys capital
goods produced at t—1 from consumers, and uses them to produce the consumption
good as well as new capital goods that it sells to consumers. I denote all period ¢ prices
in terms of period ¢ consumption good. Write p} for the price of the capital good that
is used as input to the production process at t and py for the price of the capital goods
that are produced at t. The firm takes the prices as given, and chooses among the
feasible production plans the one that maximizes profits. That is, the firm solves:

Max {v(x,y)+p; y—pi a} st (x,y)€B. (10)

Since v is strictly concave, there is a unique (, y) that solves (10). Write the solution
as (2i(pl, p9), 2°(pl, p?)). Let m(pl, p9) denote the maximal value of (10).

One share of the firm entitles its owner in period ¢ to receive a dividend that equals
the total profit the firm realizes at ¢{. These shares are traded in a competitive market,
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and let s, denote its time ¢ price, after the dividend is paid. Again this price is in terms
of time ¢ consumption good.

The consumer takes as given the sequence of prices (pl,p?,s,) for ¢ > 0. He also
takes as given the sequence of profits 7, that the firm will pay to stockholders, at each
¢t = 0. The representative consumer chooses at each ¢ = 0, an amount ¢, to consume,
an amount x, , of capital stock to carry into the next period as well as an amount
0,., of shares to the profits of the firm. In each period ¢, the consumer’s choices must
satisfy the budget constraint

¢+ pf wpy +8,(0,,—0,) < pra,+m 0, (11)

The right-hand side of (11) defines the income of the consumer at t. It consists of the
sale of capital goods to the firm and of dividends that are proportional to his
stockholdings. The left-hand side gives us his total expenditures: consumption,
acquisition of capital goods for future sales and changes in his stock positions. Let,
s = {820, ™= (7,}2,, etc. The objective of the representative consumer is to solve:

Problem Q(s,m, p', p°)

Max X d,
0<t<oo
s.t. (11) and 2, > 0 given, 0,=1, 2,=>0 and 0,>0. (12)

Let c,(s,m, p', p°), (s, 7, p',p°) and O,(s,m, p',p°) for t >0 denote the solution to
Problem @Q(s, m, p', p°), if it exists.

An equilibrium is a triple of non-negative sequences, p’, p°, s, such that, for each
t=0,

Oys,m,p',p°) = 1, (13)
(s, m,p', p°) = 2(pi, P, (14)
Ty (8,7, 0, p°) = 2°(p}, 1Y), (15)
cy(s, 7, p', p°) = v(@(pt, 7)., 2°(p}, 1Y) (16)

Equation (13) guarantees the clearing of the stock market. Equation (14) states that
the quantity of capital demanded by the firms for current production equals the
quantity offered by the representative consumer. Equation (15) states that the
amount of capital goods produced by the firm equals the amount that the consumer
desires to buy. Finally equation (16) guarantees that the consumption good market
is in equilibrium. In words, an equilibrium is a sequence of prices for capital goods
inputs and outputs, and the stock, today and at each future period, such that if
consumers forecast these future prices then their actions will ensure that markets will
clear at these prices at every ¢.

Though an equilibrium involves an infinite number of equations, it is easy to
characterize an equilibrium in the Robinson Crusoe economy by making use of the
‘support property’ (9). In fact, one may prove:

Proposition A 1. Suppose x, solves (P) and q, are the support prices defined by (9).
Then the sequences p', p° and s given by,

P =/, (17)
i = Qt+1/5ta (18)
8= V(x,)—(q,/8") xt_"(%/at’ Qt+1/8t)» (19)
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fqrm an equilibrium. In this equilibrium, for each t = 0, x,(s,m, p', p°) = x,, and c,(s, 7,
pl’po) = v(xt’xt+1)-

Proof. From (9), it is clear that 2!(q,/d", ¢,.,/0") = x,, and 2°(¢,/&", ¢,41/0") = ;. It
suffices then to show that ¢, = v(x,, 2,4,), 2, and 6, = 1 for t > 0 solve P(s,, p, p°).
Note that

Opte = P, (20)
(741 +Sp41) =S¢ (21)

Since, p?/dedV(x,,,), and V =0, p?-2,,, < V(z,,,) and, s, < V(x,) and V is bounded,
it follows that lim, &' (p?- ., + ;) = 0. This combined with (20) and (21) guarantees
the optimality of ¢, = v(x,, %,,,), x, and 6, = 1.

This result allows us to relate equilibrium prices to the optimal path z,.; = f(x,)
obtained in Proposition 4.1. If z, is an interior path, since V is strongly concave, p}
will satisfy

P = V' (f(V () (22)

and this dynamics is equivalent to that of z,. Clearly, p? has the same property.
Further, from (19), we have that if «, is interior,

s, = Vix,) —(q,/9) 2y —7(q;/ 0%, Q41 /) = OV (@p41) = V' (%41)  2piq |-

Since V is strongly concave, if n = 1, we may again write,

Ser1 = 9(8),

and the dynamics of s, is equivalent to that of z,. (When % > 1 one could attempt to
show, as in Takens (1983), that ‘generically, observations on the histories of s, are
equivalent to observations of z,. The difficulty here is that the function that
determines the ‘observable’ cannot be chosen independently of the dynamics f.) The
combination of Propositions 4.1 and Proposition A 1, can be used to show that even
in very simple dynamic economies prices can follow very complicated trajectories.
These simple dynamic economies do, however, impose other, very strong, restrictions.
The rate of return between ¢t and ¢+ 1 of an asset is equal to its price plus dividends
at t+ 1 divided by its price at t. Equation (21) above states that the rate of return
of the stock equals 1/4. Similarly (20) states that an agent that buys the capital good
jy,j=1,2,...,n, at t, pay pY and sells it at ¢+ 1 for py,, again has a rate of return of
1/6. The fact that the rate of return is constant over time is an artifice of the choice
of numeraire, the units in which prices are measured. If prices were measured in say,
the price at which the firm sells the first capital good in each period, p{*, this property
would no longer hold, except in very special cases. With a different numeraire, rates
of return would fluctuate over time. On the other hand, the fact that the rate of
return, at each time ¢, is the same for all assets that are held in equilibrium is simply
a consequence of the consumer’s optimization. If two assets have a different rate of
return, a consumer will not hold any of the asset with the lower rate of return.
Though asset prices can exhibit complicated dynamics, asset dividends must adjust
to equalize returns.

Appendix B

This appendix contains further details concerning the asymptotic distribution
theory for some statistics related to the correlation dimension. I will follow the
exposition in Brock et al. (1990).
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Let F be the common distribution of the z,s and,
Jf —lu—2v|) dF (u) dF (v), (23)
K= f[F(u+’}/)~F(u—7)]2dF(u)~ (24)

Notice that K > C?, and Dechert (1988) showed that unless Flu+y]—Flu—7y] is
constant then K > C2. I can now state:

Proposition B 1. If {x,}°, is up and if K > C?, then for N = 2, as m— o0
Vm[Cu(y) = (CL(y)™]/ V=N, 1), (25)

where
% =4[N(N—2)C?*N 3K — (% + KN —(C*V]
N-1
+8 X [C¥(KN1—C*N=2) —NCEN=-D(K —(?)]. (26)
j=1
Proof. Notice that CX(y)—[CL ()Y =g[C¥(y),CL(y)], where g(u,v)=u—v".
Since 1/m G(X,,) is asymptotically normal if 4/m X,, ~N(0,X) and G has non-zero
gradients (this uses what is known in statistics as the delta method) it suffices to show
that
Vm ([O5(7), CL(y)]—[C¥, C1) = N(0, X). (27)

More precisely from (27) it follows that (cf. Serfling 1980, ch. 3),
VmACH(y) = [ChL(y)IV} >N, o),

dg g dg g Ne1v N-1
where o= [au av]z[aua = {1,NCN-1Y X{1, NCN-1}.

In turn, (27) follows if one can show that for any pair (A, A,),
VmAA O (y) + 2, CL(y) — A, CN — 2, C} = N(0, 07(A,, A,)). (28)

In fact in this case, the entries of X are given by, 2|, = 0(1,0), Z,, = 0(0,1), X, =
= Yo, 1) —a(1,0)— (0, 1)].
To show that (28) holds, note that for any pair A,, A, and for any realization of the
histories z,, z,, ..., 2, we can write,

M Cu) +AC5(y) = [2/mm—1)] 3 h(z,2), (29)
1<i<jsm
N-1
where Mz, 2y) = A H Oy — |2 —510]) + A, 00y — |, — ),
and 2; = (;, %4, ..., ;1) The function A is symmetric, i.e. h(§,, &) = h(&,, &) for

any pair of vectors (£;,&,)e R*N. Hence A, CN(y)+A,CL(y) is a U-statistic, and
furthermore, even though two arbitrary histories z, and z, are not in general
independent, they will be so if [t—7| > N. Hence the theorems of Sen (1963) or
Denker & Keller (1983) apply and since Eh(z,z)=A,CN+2,C if |[i—j| > N,
VmAA CN(y)+ 2, CL(y) — A, CN — A, C} is asymptotically normal. The formula from
Sen (1963) can be used to compute the variance o(A,, ;) and to obtain (26).
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In the above proposition the constants €' and K involve the actual distribution F.
However, let

1t mm
Op=-—72 ZO0(y—le,—al), (30)
m” 51 t=1
{ m mm
and Km =3 2 XX 0(7’_|xr—xs|)0(7—|xs_xt|)> (31)

M™ =1 s=1 t=1

and V% ,, equals the right-hand side of (26) when C,, replaces C' and K,, replaces K.
We have then:

Corollary B 1. Under the conditions of Proposition B 1, as m— o0,
Vm [O(y) = (Co()™1/ Vy, m N0, 1).

Proof. C,, and K,, are V-statistics (cf. Serfling 1980) which converge almost surely
to C' and K respectively. Thus Vy ,, converges a.s. to V and by Slutsky’s theorem and
Proposition B 1 above we have the result.
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